Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(14): e2310010, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38117070

RESUMEN

Gauge field is widely studied in natural and artificial materials. With an effective magnetic field for uncharged particles, many intriguing phenomena are observed in several systems like photonic Floquet topological insulator. However, previous researches about the gauge field mostly focus on limited dimensions such as the Dirac spinor in graphene materials. Here, an orbital gauge field based on photonic triangular lattices is first proposed and experimentally observed. Disclination defects with Frank angle Ω created on such lattices breaks the original lattice symmetry and generates purely geometric gauge field operating on orbital basis functions. Interestingly, it is found that bound states near zero energy with the orbital angular momentum (OAM) l = 2 are intensively confined at the disclination as gradually expanding Ω. Moreover, the introduction of a vector potential field breaks the time-reversal symmetry of the orbital gauge field, experimentally manifested by the chiral transmission of light on helical waveguides. The orbital gauge field further suggests fantastic applications of manipulating the vortex light in photonic integrated devices.

2.
Phys Rev Lett ; 130(6): 060802, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36827576

RESUMEN

Boson sampling is a computational problem, which is commonly believed to be a representative paradigm for attaining the milestone of quantum advantage. So far, massive efforts have been made to the experimental large-scale boson sampling for demonstrating this milestone, while further applications of the machines remain a largely unexplored area. Here, we investigate experimentally the efficiency and security of a cryptographic one-way function that relies on coarse-grained boson sampling, in the framework of a photonic boson-sampling machine fabricated by a femtosecond laser direct writing technique. Our findings demonstrate that the implementation of the function requires moderate sample sizes, which can be over 4 orders of magnitude smaller than the ones predicted by the Chernoff bound; whereas for numbers of photons n≥3 and bins d∼poly(m,n), the same output of the function cannot be generated by nonboson samplers. Our Letter is the first experimental study that deals with the potential applications of boson sampling in the field of cryptography and paves the way toward additional studies in this direction.

3.
Phys Rev Lett ; 129(17): 173602, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36332261

RESUMEN

Quantum-correlated biphoton states play an important role in quantum communication and processing, especially considering the recent advances in integrated photonics. However, it remains a challenge to flexibly transport quantum states on a chip, when dealing with large-scale sophisticated photonic designs. The equivalence between certain aspects of quantum optics and solid-state physics makes it possible to utilize a range of powerful approaches in photonics, including topologically protected boundary states, graphene edge states, and dynamic localization. Optical dynamic localization allows efficient protection of classical signals in photonic systems by implementing an analogue of an external alternating electric field. Here, we report on the observation of dynamic localization for quantum-correlated biphotons, including both the generation and the propagation aspects. As a platform, we use sinusoidal waveguide arrays with cubic nonlinearity. We record biphoton coincidence count rates as evidence of robust generation of biphotons and demonstrate the dynamic localization features in both spatial and temporal space by analyzing the quantum correlation of biphotons at the output of the waveguide array. Experimental results demonstrate that various dynamic modulation parameters are effective in protecting quantum states without introducing complex topologies. Our Letter opens new avenues for studying complex physical processes using photonic chips and provides an alternative mechanism of protecting communication channels and nonclassical quantum sources in large-scale integrated quantum optics.

4.
Opt Express ; 30(18): 32887-32894, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242341

RESUMEN

Integrated photonic architectures based on optical waveguides are one of the leading candidates for the future realisation of large-scale quantum computation. One of the central challenges in realising this goal is simultaneously minimising loss whilst maximising interferometric visibility within waveguide circuits. One approach is to reduce circuit complexity and depth. A major constraint in most planar waveguide systems is that beamsplitter transformations between distant optical modes require numerous intermediate SWAP operations to couple them into nearest neighbour proximity, each of which introduces loss and scattering. Here, we propose a 3D architecture which can significantly mitigate this problem by geometrically bypassing trivial intermediate operations. We demonstrate the viability of this concept by considering a worst-case 2D scenario, where we interfere the two most distant optical modes in a planar structure. Using femtosecond laser direct-writing technology we experimentally construct a 2D architecture to implement Hong-Ou-Mandel interference between its most distant modes, and a 3D one with corresponding physical dimensions, demonstrating significant improvement in both fidelity and efficiency in the latter case. In addition to improving fidelity and efficiency of individual non-adjacent beamsplitter operations, this approach provides an avenue for reducing the optical depth of circuits comprising complex arrays of beamsplitter operations.

5.
Adv Mater ; 34(28): e2110044, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35306698

RESUMEN

Quantum coherence is the central element of particle states, and it characterizes the overall performance of various quantum materials. Bloch oscillation is a fundamental coherent behavior of particles under a static potential, which can be easily destroyed by Zener tunneling in multiband 2D lattice materials. The control of Zener tunneling therefore plays the key role in quantum engineering for complicated physical systems. Here, the inhibition and reconstruction of Zener tunneling in photonic honeycomb lattices are experimentally demonstrated.  Deformed honeycomb lattices are integrated and an effective static potential is realized on the 2D lattice materials. Zener tunneling disappears in stretch-type lattices and wave packets stay in the dispersionless upper energy band. On the contrary, Zener tunneling is greatly enhanced in compression-type lattices and wave packets exhibit directional oscillations without branches, which manifest the preserved coherence of the wave packets. The results demonstrate the protection of photonic coherence by structurally controlling the Zener tunneling, representing a step toward flexible quantum engineering for large-scale artificial quantum materials.

6.
Light Sci Appl ; 10(1): 173, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462419

RESUMEN

Higher-order topological insulators, as newly found non-trivial materials and structures, possess topological phases beyond the conventional bulk-boundary correspondence. In previous studies, in-gap boundary states such as the corner states were regarded as conclusive evidence for the emergence of higher-order topological insulators. Here, we present an experimental observation of a photonic higher-order topological insulator with corner states embedded into the bulk spectrum, denoted as the higher-order topological bound states in the continuum. Especially, we propose and experimentally demonstrate a new way to identify topological corner states by exciting them separately from the bulk states with photonic quantum superposition states. Our results extend the topological bound states in the continuum into higher-order cases, providing an unprecedented mechanism to achieve robust and localized states in a bulk spectrum. More importantly, our experiments exhibit the advantage of using the time evolution of quantum superposition states to identify topological corner modes, which may shed light on future exploration between quantum dynamics and higher-order topological photonics.

7.
Phys Rev Lett ; 126(11): 110501, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33798380

RESUMEN

Quantum computation promises intrinsically parallel information processing capacity by harnessing the superposition and entanglement of quantum states. However, it is still challenging to realize universal quantum computation due that the reliability and scalability are limited by unavoidable noises on qubits. Nontrivial topological properties like quantum Hall phases are found capable of offering protection, but require stringent conditions of topological band gaps and broken time-reversal symmetry. Here, we propose and experimentally demonstrate a symmetry-induced error filtering scheme, showing a more general role of geometry in protection mechanism and applications. We encode qubits in a superposition of two spatial modes on a photonic Lieb lattice. The geometric symmetry endows the system with topological properties featuring a flat band touching, leading to distinctive transmission behaviors of π-phase qubits and 0-phase qubits. The geometry exhibits a significant effect on filtering phase errors, which also enables it to monitor phase deviations in real time. The symmetry-induced error filtering can be a key element for encoding and protecting quantum states, suggesting an emerging field of symmetry-protected universal quantum computation and noisy intermediate-scale quantum technologies.

8.
Opt Lett ; 46(7): 1584-1587, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33793493

RESUMEN

The inevitable noise and decoherence in the quantum circuit hinder its scalable development, so quantum error correction and quantumness protection for multiple controllable qubits system are necessary. The flatband in the dispersion relation, based on its inherent locality and high degenerate energy band structure, shows non-diffractive transport properties in the line spectrum and has the potential possibility to protect quantum resources in special lattices. The pioneer work has proved that the topologically boundary state is robust to protect the quantumness from disorder and perturbation, which inspires that quantumness can be protected anywhere in a periodic structure, including the boundary state and bulk state. Here, we show the topological protection of quantum resources with different state combinations in a sawtooth lattice. Photons can be localized at any degenerate eigenmode, and the localized effect is determined by only one parameter, without additional modulations. We show a high violation of Cauchy-Schwarz inequality up to 35 standard deviations by measuring cross correlation and auto-correlation of correlated photons. We verify that the topological protection is robust to different wavelengths of correlated photons. Our results suggest an alternative way of exploring topological protection in flatband and bulk state, demonstrating the powerful ability of topological photonics to protect quantum resources.

9.
Opt Express ; 28(26): 39492-39500, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33379497

RESUMEN

Topological materials are capable of inherently robust transport and propagation of physical fields against disorder and perturbations, holding the promise of revolutionary technologies in a wide spectrum. Higher-order topological insulators are recently predicted as topological phases beyond the standard bulk-edge correspondence principle, however, their topological invariants have been proven very challenging to observe, even not possible yet by indirect ways. Here, we demonstrate theoretically and experimentally that the topological invariants in two-dimensional systems can be directly revealed in real space by measuring single-photon bulk dynamics. By freely writing photonic lattices with femtosecond laser, we construct and identify the predicted second-order topological insulators, as well as first-order topological insulators with fractional topological winding number. Furthermore, we show that the accumulation and statistics on individual single-particle registrations can eventually lead to the same results of light waves, despite the fact that the development of topological physics was originally based on wave theories, sharing the same spirit of wave-particle nature in quantum mechanics. Our results offer a direct fashion of observing topological phases in two-dimensional systems and may inspire topologically protected artificial devices in high-order topology, high-dimension and quantum regime.

10.
Phys Rev Lett ; 125(16): 160502, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33124854

RESUMEN

In the age of the post-Moore era, the next-generation computing model would be a hybrid architecture consisting of different physical components, such as photonic chips. In 2008, it was proposed that the solving of the NAND-tree problem can be sped up by quantum walk. This scheme is groundbreaking due to the universality of the NAND gate. However, experimental demonstration has not been achieved so far, mostly due to the challenge in preparing the propagating initial state. Here we propose an alternative solution by including a structure called a "quantum slide," where a propagating Gaussian wave packet can be generated deterministically along a properly engineered chain. In our experimental demonstration, the optical NAND tree is capable of solving computational problems with a total of four input bits, based on the femtosecond laser 3D direct-writing technique on a photonic chip. These results remove one main roadblock to photonic NAND-tree computation, and the construction of a quantum slide may find other interesting applications in quantum information and quantum optics.

11.
Natl Sci Rev ; 7(9): 1476-1484, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34691544

RESUMEN

Though it is still a big challenge to unify general relativity and quantum mechanics in modern physics, the theory of quantum field related with the gravitational effect has been well developed and some striking phenomena are predicted, such as Hawking radiation. However, the direct measurement of these quantum effects under general relativity is far beyond present experiment techniques. Fortunately, the emulation of general relativity phenomena in the laboratory has become accessible in recent years. However, up to now, these simulations are limited either in classical regime or in flat space whereas quantum simulation related with general relativity is rarely involved. Here we propose and experimentally demonstrate a quantum evolution of fermions in close proximity to an artificial black hole on a photonic chip. We successfully observe the acceleration behavior, quantum creation, and evolution of a fermion pair near the event horizon: a single-photon wave packet with positive energy escapes from the black hole while negative energy is captured. Our extensible platform not only provides a route to access quantum effects related with general relativity, but also has the potentiality to investigate quantum gravity in future.

12.
Ying Yong Sheng Tai Xue Bao ; 26(10): 3181-8, 2015 Oct.
Artículo en Chino | MEDLINE | ID: mdl-26995929

RESUMEN

In this experiment, different proportions of the cattle manure, tea-leaf, herb and mushroom residues, were used as food for earthworm (Eisenia fetida) to study the growth of the earth-worm. Then the characteristics and transformation of nutrient content and three-dimensional excitation emission matrix fluorescence (3DEEM) of dissolved organic matter (DOM) during vermistabilization were investigated by means of chemical and spectroscopic methods. The result showed that the mixture of different ratios of cattle manure with herb residue, and cattle manure with tea-leaf were conducive to the growth of earthworm, while the materials compounded with mushroom residue inhibited the growth of earthworm. With the increasing time of verimcomposting, the pH in vermicompost tended to be circumneutral and weakly acidic, and there were increases in electrical conductivity, and the contents of total nitrogen, total phosphorus, available nitrogen, and available phosphorus, while the total potassium and available potassium increased first and then decreased, and the organic matter content decreased. 3DEEM and fluorescence regional integration results indicated that, the fluorescence of protein-like fluorescence peaks declined significantly, while the intensity of humic-like fluorescence peak increased significantly in DOM. Vermicomposting process might change the compositions of DOM with elevated concentrations of humic acid and fulvic acid in the organics. In all, this study suggested the suitability of 3DEEM for monitoring the organics transformation and assessing the maturity in the vermicomposting.


Asunto(s)
Sustancias Húmicas/análisis , Oligoquetos , Suelo/química , Espectrometría de Fluorescencia , Agaricales , Animales , Benzopiranos , Bovinos , Fluorescencia , Estiércol , Nitrógeno , Hojas de la Planta ,
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...